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FOREWORD

The study presented in this report covers a phase of a

theoretical investigation of curved jets supported by the U. S. Army

transportation Corps during the year 1U60-1961 through the Air
Programs Office of the Office of Naval Research, under the terms
of Contract Nonr-2747(00).
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SUMMARY

A numerical solution of the two-dimensional curved turbulent

and incompressible jet flow, using the IBM 7090 computer, is presented.
This solution is a straight-forward extension of the classical straight

jet soiution. Its only limitation is that it assumes similar velocity

profiles.

The solution is obtained by reducing the Navier Stokes partial
differential equations of the curved jet flow to a third-order total different-
ial equation of the Hartree-Skan type. This equation is integrated numeric-

ally on the IBM 7090 computer using a Runge-Kutta subroutine. The
boundary conditions are carefully established and discussed. The complete

program for the numerical solution is included in the report. A duplicate
IBM deck can be obtained from Aerophysics Company upon request.

Typical numerical results, in the form of velocity and pressure distri-

bution across the jet are presented and discussed.
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LIST OF SYMBOLS

A Constant, shape parameter of the curved jet

b width of jet
C constant a
F( ( ) unknown function of the problem
G(7? F' ( -r
H(q) G'(TJ

K jet curvature
m mass flow
p static pressure

R radius of curvature of jet

s part I: fixed characteristic length from the orifice, counted
along the x-axis

part II: curvilinear distance: ds 2 a dx2 + dy 2

U(x) maximum jet velocity
u jet velocity component in x-direction

v jet velocity component in y-direction
x curvilinear system of coordinates, as defined in the text and

y on figure 1

0( constant
1• constant
£" virtual kinematic viscosity

*- 0' y/x, dimensionless variable
Si viscosity

P density
0' free constant, assumed equal to 8. (This is arbitrary, represents

only an order of magnitude)
X1 empirical constant
14] stream function

Subscript

s conditions at the distance s from the orifice
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INTRODUCTION

In spite of the remarkable success of inviscid theories to
predict the performance of hovering ground effect machines, it cannot
be concluded that viscous phenomena do not sometimes play an important

role in the understanding of the flow mechanics of hovering annular jets

in ground effect. In particular, the lack of an analytical grasp of viscous
effects has prevented until now the establishment of a satisfactory
mathematical theory of the stability of ground effect machines.

The major viscous effect associated with annular jet flow concerns
entrainment of air from the central cavity, the so-called "air cushion".
by the peripheral jet. When the base of the machine is parallel to the
ground, this entrainment results in a quasi-rotational flow under the
machine, which can be ignored for most practical purposes, especially
if the base is fairly close to the ground. However, when the base of the

machine is pitched with respect to the ground, a strong cross-flow
establishes itself, with an unsymmetrical pattern, and strong destabil-

izing pitching and rolling moments may appear. The seriousness of

this phenomenon depends obviously upon the amount of air which is being
entrained by the peripheral annular jet.

In a very elegant first approximation, Chaplin assumed

(Reference 1) that the amount of flow entrained by a curved jet was the

same as that of a straight jet, for which both theoretical and experiment-

al data are available (References 2 and 3). The purpose of the present
investigation is to approach the problem analytically, by extending the

classical straight jet flow theory to the curved jet.

A formulation of the problem was made earlier by Boehler in

Reference 4 for a laminar jet and by Chang in Reference 5 for a turbulent
jet. Here, the turbulent case is considered, since it is well known that



all jet flows obtained experimentally are mostly turbulent. Formally,
the equations of the present problem are the same as those of Reference

5. However, an important difference with Reference 5 is that the systems
of axes are defined differently. In all cases, the basic assumption is

made of the similarity of the velocity profiles. This assumption is
resthictive, and may turn out in the long run not to be justified.

However, it is a reasonable one for a first approach to the problem,
since it makes possible a closed-form solution of the problem and

allows a simple direct comparison with the straight jet case. Restrictive
as it may be, the assumption of similarity was also used in the analytical
solution of the boundary layer along a curved wall (Reference 6).

The solution is obtained by reducing the Navier-Stokes partial
differential equations of the curved jet flow to a third-order total
differential equation of the Hartree-Skan type. This equation is inte-
grated numerically on the IBM 70%0 computer using a Runge-Kutta
subroutine. The boundary conditions are carefully established and
discussed. The complete program for the numerical solution is

included in the repo&t. Typical numerical results, in the form of

velocity and pressure distribution across the jet are presented and
discussed.

The solution of the basic curved viscous jet is important not
only for an understanding of the flow mechanics of ground effect machines,
but for many other problems as well, such as those involving cavity flows

(base pressure of missile boosters for example) or the understanding

of the Coanda effect.

The two-dimensional solution can be extended to three dimensions,
if desired, by means of a Mangler transformation (Reference 4).
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I EQUATION OF THE PROBLEM

Historically, it was found (Reference 2, page 143 for example)

that the equations governing the flow of a two-dimensional jet emerging
from a narrow slit into a fluid at rest are formally the same as the
boundary layer equations along a straight wall (with no pressure

gradient); actually the two-dimensional jet case is one of the few

cases where the Navier-Stokes equations can be integrated exactly.

Similarly, the equations of motion of a two-dimensional curved

viscous jet are formally the same as those of the boundary layer along
a curved wall. The general Navier-Stokes equations for the flow along a
curved wall and their simplification by use of the standard boundary-
layer approximations are discussed in detail in Reference 6. These

equations are directly usable for the two-dimensional curved jet, as

pointed out in Reference 4. One difference, however, lies in the defini-
tion of the system of axes and coordinates. This point bears a detailed

discussion which will be made here.

For the boundary-layer flow along a curved wall, the choice of
the coordinate system is obvious (figure 1 a). It is a curvilinear system

of coordinates in which the x axis is in the direction of the wanl and the y

axis is normal to it. The stagnation point is taken as origin of coordinates.

The curvilinear net therefore consists of curves parallel to the wall and

of straight lines perpendicular to them. The corresponding velocity

components are called u and v and the curvature at a point x is K(x),

which is a continuous function of x and is positive for convex and

negative for concave curvature. For the laminar case and for moderate

wall curvatures, it is shown in Reference 6 that the boundary layer
equations reduce to:

----- + -- u- + 0

+ 0 3



Similarly, for the turbulent case, the equations of motion

reduce to:

-u a~u v ")u I_ D
-1 -x+ -yy _!X, 2

4y .a pKu2

I --"u "V

Eis the kinematic viscosity which is assumed to be determined

from Prandtl's mixing-length theory (Reference 2, Chapter MX). In

general:

"Xb(Umax - umin)

here: (III) I" = X, b U

where U denotes the maximum velocity, b the width of the mixing zone

and Xis an empirical constant. E is assumed to be independent of y.

Denoting the center-line velocity and the width of the jet at a
fixed characteristic distance s from the orifice by Us and bs respective-
ly, we may write:

-1
U WX Us (X-• b =bs x

Consequently:

s( with s Xbs Us5

Further, the assumption of similarity results in the turbulent case in:

(IV)
x

where (' is a free constant. 4



We may now come back to the problem at hand, i. e. the curved
jet (fig. 1 b ). The main difficulty in trying to apply the above boundary

layer equations lies in the definition of a system of coordinates. One is

first led to separate the jet into two regions: the "inside" jet and the

"outside" jet. The line which separates the two regions is then defined

as the "axis" of the jet. At the outset, the shape of the axis is not known.
It will be shown later on that, out of many possible such axes, only one

must be-'hosen, for no better reason than because that particular choice
leads to a possible reduction of the Navier-Stokes partial differential

equations to a single total differential equation. Thus a two-dimensional

curved jet flow is the sum of two flows respectively analogous to the
boundary-layer flow along a concave wall of curvature - R and that along

a convex wall of curvature + R. For each region, then, using the proper

sign of R, the above equations I and II hold.

One would be tempted to say that the maximum velocity of the
flow U defined before in connection with the definition of the kinematic

viscosity (equation MI) is the center-line velocity, i. e. the velocity along
the "axis" of the jet, as is the case for the straight jet. We shall see

later that this is not the case. Indeed, one could arbitrarily define the

axis as the line of maximum velocity; however, this condition would be

insufficient to determine the equation of the axis and would lead to

analytical difficulties in the solution of the problem.

By analogy with equation (IV) of the boundary layer case, the

assumption of similarity of the velocity profiles is used in the solution

of the curved jet case. The hypotheses of Prandtl's mixing-length
theory are also assumed to hold, possibly with different values of the

arbitrary constants, so that the maximum velocity U still varies like

the inverse of the square root of x.

In the algebraic calculations involved in passing from the Navier-

Stokes partial differential equations to the total differential equation, it is

sufficient to consider only one-half of the problem, I. e. either the

5



inside or the outside jet, since the other half can be obtained by changing
the sign of the radius of curvature in the equations.

The problem of the curved viscous jet can therefore be stated as
follows:

Iu u v - u 2 1
-- + -x/-'x + "•2u (1

Ku2 (2)

V + (3)

E" Xb Us (-1)7 (4)

x (5)

To solve these equations, one can, as for the straight jet, define

a stream function, Wi which is assumed to be of the form:

. C- U s x2 F(7) (6)

F is the unknown function, the determination of which will give the

solution of the problem.

Expressing the velocity components in terms of F and F' and

substituting into the momentum equations, one can replace the partial
differential equations by one total differential equation involving the function

F. It must be noted that, in the following derivations, some liberties have
been taken with respect to the notations for partial differentiation. These
equations have been checked very carefully, however, and are believed
to be correct. The calculations are as follows:

U'(Us s F (7)

6



V- ' (8)

from equations (7), and (8), the left-hand member of equation (1) can

easily be calculated.

*P
Next one must calculate r-, using equation (2) and substitute

the value thus found into the right.-hand member of equation (1). In keeping

with the general assumption of similar velocity profiles, one will assume that

y only appears in the expression of p through the term• . Hence:

Further:

Z za P(10)

From equation (2):

From equation (7):
1

U = Us (-;)X F'(7?) (11)

We stated earlier that y could not appear formally in the

expression of p; similarly, it cannot appear in the expresaion
of J• Therefore, equation (11) is only meaningful if the product Ky is

a func3ion of n alone. Rather than attempting to solve the problem for

any function of 7 , one can choose a particular one, the simplest one, for

example a linear function of 7 . One is therefore led to put:

A (12)

where A is a constant.

7



or: 2Ky=A? (12b)

By substitution, equation (11) simplifies to:

A Us2 s A ,2 (13)

Note that, now, equation (12) defines the center line of the jet.

By substitution, one finds the following differential equation for F:

(A7q+ 1 F'2 + F F"+ 1F"= a0 , (14)

after letting:

cr"1 15s•=• tU••ss(15)

which is legitimate since X, in the expression of E s is a free constant.

Naturally, from equation (12), if A = 0, the curvature K of the jet

is also zero. A - 0 corresponds to the straight jet case. Equation (14)
reduces then to:

F'2+ FF"+ F'"=0 (16)

Equation (16) is the differential equation of the straight jet solution (Ref-

erence 2, page 408), as it should be.

The solution of the curved jet problem amounts to finding a solu-

tion of equation (14), which also satisfies the proper boundary conditions.

This solution must be referred to a system of axes which still remains to
be determined. What one knows at this point is that the axes are defined

by equation (12 b): 2 Ky = A . Before proceeding with the solution,

we shall determine the center line of the jet and these axes analytically.

Obviously, the center line will consist of a family of curves depending upon

one arbitrary parameter A.

8



II SHAPE OF THE JET

The shape of the jet is defined by the equation

A
Kym -7

where: x and y are curvilinear coordinates along the curve, as shown
on the figure

K is the curvature of the center line of the jet
7n = f y/x, where (f" is a constant

A is a parameterI

When one looks for the equation of the shape of the center line of the jet,

which we have called x-axis, one must find this shape with respect to

a fixed system of rectangular coordinates x, and yl. The unknown

equation of the curve is yl a yl (x) and is defined by the following intrin-

sic equation (since x becomes sl, length of an arc on the curve):

Ky= A/2 O" (y/sI)

or KaA (1/2(1/sl)

Defining a new constant C a A G"/2, one has:

K C/s 1

19



Therefore, one wishes to find the curves for which the curvature
at a given point is inversely proportional to the length of the arc between

the origin and that point, the length of the arc being defined by the differ-
ential relationship:

dsl2 = dxl2 + dyl2

For simplification, we shall drop the suffix "1" in all that follows. Let

us remember, though, that the curve to be found will be referred to the

fixed system of coordinates xl0yI.

The radius of curvature R = l/K, is given by

3/2
R -- yV. (17)

The intrinsic equation is:

K- C/s ( 18)

Therefore,

R a (1/C)s ( 19 )

Differentiating with respect to x, there comes:

dR 1ds (20)

but ds - -j+y2 (21)
dx

S.32[1 .I1/2 23/2
and dR 3/2 _t..yLx2 2 [ + y 22)

Ror: dR , [1 + y,21 1/2 x yy"2  - y.'. + Y'21  (23)

y1

10



Substituting ( and 0 into equation (4), there comes:

3(1 + y12)1/2 yly,,2 - y,'l (1 + y'2) 3/ 2  I 1/C (1 + y,2)1/ 2 y- 2

Simplifying, one finds:

3y'y'' 2 - y'" (1 + y, 2)= 1/C y,, 2  (24)

The problem is reduced to solve equation (24), a thirdorder differential
equation, the solution of which gives y a y (x)

Note that the equation is homogeneous and that neither x, nor y appear in
it. To solve it, let us first consider y' • dy/dx as the variable and

y"• d2 y/dx2 as the unknown function. Therefore, let

y' = t, independent variable

y"u p, unknown function
One has:

y,,dd_= d ,d-y
dx d.

The above equation is therefore of the form:

F(t,p,p') 0

Substituting, one finds:

3tp 2 - p'p(1 + t2) - (1/C)p2 • 0

Dividing by p, there comes:

3tp-p' -t2-p/C-0

or p' (1+ t2 )+ p(1/C- 3t)=0

or p* 3t- I/C

Logp m -1/Cdt= I f2tdt I f dt

fP + 2 111Z +2 t72Logp= -



Log p 3/2 Log (1 + t2)- 1/C tan-'t+ C1  (25)

going back to the original variables, one has:

Log y" a 3/2 Log (1 + y, 2 ) - 1/C tan"1 y' (26)

Equation (26) is a second-order differential equation which is again homo-

geneous, and in which y does not appear.

Consider now y as the variable and y' - dy/dx as the unknown

function

9 my'rap

hence: d_=y,, = d
dx

Substituting into equation (26), one finds now:

Log (p p') a 3/2 Log (1 + p2 ) - 1/C tan-1 p (27)

or: Log p + Log p' - 2/3 Log (1 + p2) _ 1/C tan-1 p

Log yd atLog (1 + p 2) -Log p-tan- p
2 3/2

dn +(1 +p ) -(1/C)tan-lp

Therefore, inverting:

dy- 32/z e(1/C)tan p dp
(1 + p 1)

y ý el/C tan- Il p
1+p2)

12



to solve the irnLegral, let us make the change of variable tan' 1p U a

or: p Wtan u

dp=(I+ tan22u) du

tanu u/C 2
hence: y - euC1IL + tan2u) du

+ tan2 u)

Simplifying, there comes:

Stan u u/C

ya e dai

but IItanzu cos 2 u

8'i uco.e/
hence: y= fts- j cos u eu/C du

Y s fsin u eu/C du (28)

Equation (28) can be integrated (Burington, Equation 312):

(where a a I/C, b a 1)

eU/C
y e (1/C sin u - coe u) (29)I1+ 1/C-

together with: p a tan u

Going back to the original variables, one has:

y . e-•/• (I/c sin u - cos u) (30o)
T A

a tan u

Let us now differentiate the first equation (30) and substitute

into the second one:

13



dy- eu/C sin u du

therefore:

d eu/C sin a eu/Cdx • m= dume cosu du

COs U

xu feu/C cosu du (31)

Equation (31) can be integrated (Burington, Equation 314):

eU/C
finding: x= .eu/ I/ C 2 ( ((1/C)cosu + sinu)

Therefore, the parametric representation of the desired curve

is as follows:

eu/C C
x U -1 +/ ( (1/C)cos u + sin u) - 32)

eu/C C
y . ( /C (1/C)sinu - cosu) + C2

1 +. 1/C 1+

= tan u

This equation is plotted In. Figure 2 for C a 0.5, C 1.0, C• 2 and C a 4.

14



II
M PROCEDURE FOR SOLUTION

The equation to be solved is:

(A + ÷ 1) F,2 + FF+ F.i0 (14)

An approximate solution of this equation was given in Reference 5.
Here, a numerical but exact solution is discussed, which makes use of the

IBM 7090 digital computer.

The equation is solved using the Runge-Kutta method. Putfing:

F',,G (33)

Film G' m H (34)

equation (14) becomes:

(An + 1)G 2 + FH +2H'"O

or: H' -2[(Aq + 1) G2 + Fj (35)

The system of equations (33) to(35) can then be solved numerically using
the digital computer, after the initial boundary conditions are specified.

A thorough discussion of the boundary conditions will now be made.

The thee boundary conditions suggested and used in Reference 5
are as follows:

at SO F (0).O) (36)
at - F' (o)aG (o). 1 (37)
at s.ee F-I-4mG+-40 (38)

Preliminary runs on the computer indicated that the above boun-

dary conditions are neither correct, nor sufficient to solve the problem.

15



For these early runs, the following procedure was adopted: the numerical
calculations start from n = 0. One needs therefore to know the initial
conditions on the function F and its derivatives at m 0, 1. e.:

F(O), G(O), H(O)

Equations (16) and (17) give:

F(O) a 0
G(0)- 1

There rer-ains to assume: H(0) (X

From equation (7), if one plots u, x-component of the velocity, against )7
H(0) = (X represents the slope at n - 0 of that velocity distribution.
For the straight jet, H(0) - 0 (the velocity profile is symmetrical with
respect to y = 0). For the curved jet, H(0) can have any value between

0 and . For small curvatures, however, it stands to reason that

H will be small. For example, for A = - 0.25, one found H 0 - 0.13.

One can then start from an arbitrary value H, (0) a aX and
integrate the equations (33) to (35) numerically. It was found that incre-

ments of n equal to 0.02 were satisfactory. In principle, one inte-
grates until n = . In practice, for computational purposes,
"infinity" can be defined as the value of n for which G( il) 0 ± 0. 000 005.

It was further found that, instead of using a variable l (.,) for

which the above criterion would be satisfied, it was just as accurate and

simpler to carry out all calculations up to -4 and take infinity at
S• 4. This viewpoint was carried out in all subsequent calculations.

An additional difficulty which occurred because of the use of *=4 in
lieu of "infinity" is discussed later on. The trial values (X,
of C( can be adjusted until the boundary condition (38) at infinity is

satisfied with the desired accuracy.

16



The printout of early programs consisted of four columns of
numbers showing respectively 'n, F, G and H for all values of
between 0 and 4 with (L• 0. 02). The velocity distribution across the

jet in each case could be obtained by plotting G against • , as shown in
the sketch hereunder.

- S I:OTSI-
C^-V 1 "ry CAVI-ry

It immediately became apparent that the three boundary conditions

(36) to (38) were not sufficient, but that one also needed to have the
boundary condition H ( o.) * 0 (i. e. the slope of the velocity profile at
infinity had to be zero), in order to have physically-possible velocity

profiles. Thus, it would appear at first sight that one had now four
boundary conditions: F(0) a 0, F'(0) x 1, G(oo ) * 0, H(oo ) •0 and that

the problem would be overdetermined. Such is not really the case.

The difficulty is due to the fact that one had to replace infinity by a finite
value of ' ( a 4), in order to save lengthy step-by-step integrations.
It turns out that the boundary condition G( oo ) . 0 is, for numerical

purposes,equivalent to the two conditions: G(4) - 0, H(4) a 0. If one

were to be at infinity, G( n ) - 0 would automatically entrain H( 00 ) - 0,

which therefore would not have to be prescribed as part of the problem.

At • 4, if one were to specify only one of the two conditions:

G(4) w 0, H(4) - 0, either of the two situations pictured hereunder could

take place, both being physically unacceptable:

17&J



(4 fo H(4)0o

+ - N

In all subsequent calculations, it was therefore accepted that
the boundary conditions of the problem at infinity could be replaced by

G(4) - 0, H(4) - 0. In fact, one sometimes had G(4) a 0, but one never
could have H(4) a 0. One usually had to be satisfied with H(4) 4 0.003.

The next step in the work was to set up an iteration procedure
for H(0) =a L . This could be done sirply by assuming two initial

values (X and a 2 and setting up an interpolation formula from which
the desired value of 0( could be determined. This formula is not discussed
here, but was included in the first program, which is reproduced in part

IV of this report. Convergence was very rapid (usually 2 or 3 iterations).

During the early runs, an alternate method of approach was
tried. The iteration was carried out backwards from 77 = 4 to 1 * 0.
The initial boundary conditions were then:

F(4) •z/I , assumed value

G(4) a 0
H(4) - 0

The value of PJ was changed until a value was found which satisfied the
boundary condition G(0) = 1.

This method turned out to be unsatisfactory for many reasons.
At best, it had no marked advantage over the direct integration method.

IG



At worse, it was very inaccurate, because the result depended greatly
upon the assumed values of G(4) and of H(4). If one assumed G(4) w H(4)=0,
the numerical integration would never get "started", because these con-

ditions could only be satisfied at infinity. One had to assume, for example,
H(4) = 0.000 005. Then, it turned out that the whole solution depended
greatly upon the assumed value of H(4). The backwards integration was

therefore abandoned.

To summarize these early investigations, for any given value of

a parameter A, the equation:

(A l + l) F 2  + .F ' -O

subject to the boundary conditions:

F(0) = 0

G(0) - I
H(oo )=0

gives a unique solution: F(n), G( 17), H(? ). This solution is obtained

by determining by an iteration formula the quantity (( a H(0), such as to

satisfy simultaneously: G(4) - H(4) - 0.

After a number of runs were made, it became apparent that the

above formulation of the problem is not correct. Naturally, in retrospect,

this became obvious: it is interesting to see how a numerical investigation
can lead to a better theoretical understanding of a problem! None of the

statements made above are wrong; however, an important boundary
condition has been omitted; that which expresses the matching on the

axis of the "inside" and of the "outside" jet. For a given value of the
constant A, say A1 , the inside of the jet is found as solution of the

equation:

(Axle 1) F,'2  F F"÷+ F".O
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the outside of the jet is found as solution of the equation:

(-A, n + 1) F,2 + F F" + FMa=0

These two equations are obviously distinct. If one solves them together

with the boundary conditions (36) to (38), one must now express in addition
that the slope Hi(O) of the velocity distribution for the inside jet is equal
in absolute value to the slope Ho(O) of the velocity distribution for the

outside jet. Numerical results as well as intuition tell us that there is

no reason why this condition should turn out to be satisfied automatically;

the problem as stated above is therefore overdetermined.

A reexamination of the hypotheses indicated that the problem can
be stated correctly for the complete curved jet by eliminating boundary

condition (36): F(O) a 0. This condition was written initially by analogy

with the straight jet case, in which case it was a consequence of symmetry,
since, for the straight jet, v a 0 on the axis (there is no cross flow across

the axis). Because of the formal resemblance between the equations for

straight and for curved jet, here again F(0) = 0 is equivalent to have vu 0

at - 0, 1. e. on the axis (this can be seen immediately from equation
(8)). This condition would be justified if the axis was a streamline.

However, as explained before, the axis of the jet (line 7 = 0) is defined

by the condition 2 K y - A , and this does not make it a streamline.

The boundary condition F(0) = 0 can therefore be dropped without inconsist-

ency and replaced by the condition that

H(0) , inside H(0)) outside (39)

In the remaining part of the investigation, the boundary conditions

(37) to (30) were therefore used in connection with the numerical solution

of equation (14). The complete solution was obtained in two steps, which

will now be described in detail.
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To obtain a numerical solution of the problem, it is still necessary

to start with numerical values of F(0), G(0) and H(0). As before, G(O) a 1

and H(O) can be obtained by iteration, assuming initially two arbitrary values
(x 1 and (X 2? It would have been possible to set up an iteration proce-

dure for F(0) similar to that developed for H(0). Instead, it was found
simpler to find the proper value of F(0) graphically. A first program was
written, simply to establish in all cases the proper initial values F(0),

G(0), H(0). The graphical procedure is illustrated in figure 3, corresponding
to the following initial conditions:

F(0) = 0.001, 0.005, 0.01 successfirely

G(0) a 1
F'(oo )a0

An + 0.25; As - 0.25

In each of the 6 cases above, equation (14) was integrated numerically and

H(0) found by iteration. The result is plotted in figure 3 in the form of F(0)

against H(0). In this, as in all subsequent cases, it was found that F(0)
varied linearly with H(0). The value of F(0) corresponding to the solution

of the complete jet is found, according to boundary condition (39), as the

intersection of the two lines A a + 0. 25 and A - 0.25 on figure 3.

The above calculations were repeated for a number of values of A

between 0.025 and 0. 50. Some of the results are shown in figure 4. Next,

the solutions of the curved jet problem F(O) and H(0) found as described
abovo were plotted against the parameter A The results are summarized
in figure 5. One startling result came out unequivocally: H(0) varies

linearly with A; i. e. the slope of the velocity distribution curve at 71.0

varies linearly with the parameter A which determines the dupe of the jet.

The variations of F(0), G(0), H(0) as a function of A are interesting
to follow on figure 5, starting from A a 0. A a 0 corresponds to the straight

jet; in this case, as we know, F(0) m 0, G(0) = 1, H(0) n 0. As A increases,
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F(O) becomes negative while decreasing, then starts increasing, becomes

zero and next becomes positive. This means that the velocity v across

the axis of the jet is positive for small curvatures and becomes negative

fur large curvatures (this comes out of equation (8)). As A increases,

G(0) remains always equal to 1 and, as noted before, H(0) increases

linearly with A.

Figure 5 therefore completely depicts all initial conditions of

the problem which automatically satisfy the boundary conditions (37) to

(39). The information of figure 5 can therefore be used in lieu of the
boundary conditions, hence reducing the machine program to a straight-

forward numerical integration without iterations or cross-plots.

A second program was therefore prepared to perform the Runge-

Kutta integration, for known initial values F(0), G(0), H(0). This program

is listed in part IV of this report. Note that the Information contained in

the first program is also listed in the second one, but is not used.

This was done so that, if somebody wished at a later date to obtain F(0)

and H(0) with great precision, this could be done without having to revert
to the first program. Therefore, the first program is listed in part IV

for information only, since all that it contains is also contained in the second

program.

Prv.vislons were made in the second program to calculate the

integral fI(+?- 2( l ) dq and print the result. This allows to calculate

the pressug distribution across the jet as follows:

From equation 13, an elemental pressure variation across the jet
is given by:

dp. pus32 A- G 2(n )d n
U2 s U2

Remembering that: Us ,

one has: cip U2 AG 2 d
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The total pressure across the jet is therefore:

1: 2

IP A- UA fG2ýdn (40)

I'0

f

2
I1



IV PROGRAM

Two programs are shown here. The first program was used to
obtain the data of figure 5. The second program is more general and
includes the elements of the first program as an option.

All symbols used are defined; listings of the two programs are
shown, as well as the data card input.

Symbolic location Contents

A Constant in differential equation (12)

ABSF Closed subroutine used to compute the absolute value
AF Initial value of F (i. e. F(0) )
ALP (N ) Initial value of H (i. e. H(0) )
DEL X Increment of n (DEL X = 0.02)
EN Maximum numerical value of n (EN = 4)
F ( 1 ) Unknown function of the problem

F 1 "q at specified interval of integration

G ( n ) F' (ni )
G 1 Value of G from the previous integration step
H(1?) "G' ( )
II index of values of A

IIJ iteration counter
liP index variable for the value of F(0)

INT closed subroutine which initiates the subroutine RWINT
(SHARE distribution)

INTM subsequent entries to RWINT
Note: DAUX is used by RWINT to compute the deriv-
atives G and H.

lOP print option: if non zero print every case
if zero, only print the converged value of H

JJ variable index used to go from one value of H to the next
one

K index variable used in interpolation formula
M the number values of A
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Symbolic location Contents

SMM Maximum number of iterations and maximum number
of values read in for F(O)

OP option
T(2) n?

T(3) delta
T(4) F(O)

K T(5) G(O)
T(6) H(O)

Additional symbols for the second program

G 11 G square

G 12 sum from to )?2 of G square d

NN option whether to compute G 12 or not

SIMPUN Closed subroutine to evaluate the integral sum of G2 d
(SHARE distribution).
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FIRST PROGRAM

DIMEHSION AilO0)bTi100) ,F( 1000),ti 1000),H( 1000),ALPIi 100) ,ALP( 1000
lktFl(500)
X9 AF ( 100)
C0MP10i At TpFtGIH, I 1IALPI, ALD
X,F)

16 FORMAT (78H0 FTA F G

XEA 10H

10 FORM'AT (72HI
x
PRINT 10
READ 1?,EN,M,MM,DELX,(ALP(JJ),JJ=1,2) ,IOP

12 FORMAT ilF6.C,2I6#3F16.6,I6)
READ 13, (A(I)tI=IM)

13 FORMAT (~4F]6.6)
READ 1 10, CAF( 1),1=1,MM)

170 FORPAT(4EI6.L4)
PRINT 50,EN,M,MM,CALP(JJ) ,JJ=1 ,2),DELX

50 FORMAT C25H0 THE UPPER LIMIT ON ETA=F6.2/27H0 THE NU?'BER OF VALUE
XOF A=16/3OHOMAXIMUM NUMBER OF ITERATIONS=16/22H0 IAITIAL VALUES OF
X H=2F)6.6/1?HO STEP-SIZE=F]6.6)
PRINT 51

51 FORMAT (1HO,30X,8HA-VALUES
PRINT 52,(A(I), =1 ,M)

52 FORMAT i30X,F 16.6)
11=1
IF(IOP) 53,53955

55 SENSE LIGHT 2
53 SENSE LIGHT 1

JJ= I
I IP=1
K 1
I IJ~1
IF (EN) 14,04P15

14 CALL ENDJOB
15 T(2)=O.O

T (3)=DELX
T(4)=AF( lIP)
T(5)=1.O
T (6)=ALPf JJ)

CALL INTIT,3, 1,0,0,0,0,0,0)
F1(I)=T(2)
F (1)=T (4)
G(Il)=T(5)-4
Hi I )T(6)

77 CALL INTM
Fill) =T (2)
F I I)=T(4)
G( I IT(5)

19 H(I)=T16)
1-1+1
IF(EN-T(2) 118,77,77

18 IF(ABSF(T(5))-.0005) 39039940
39 SENSE LIGHT 0

GO TO 22
40 IF(SENSE LIGHT 1) 41,45
41 JJ=JJ+1
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GI=T(5)
IF (SENSE LIGHT 2) 21915

145 ALP( K+2)u (ALP(K+l)-(T(5)*(ALP(K)-ALP(K+fl )/(G1-T(Sf)))
JJ=K+2
KuK+ I
GI-T(5)
I IJ-IIJ+1
IF(IIJ-MM) 56,56,80

56 IF(SENSE LIGHT 2) 21,15
80 PRINT 25,IIJ
25 FORMAT (20Xtl6,2]H ITERATIONS COMPLETED)

SENSE LIGHT 0
I IIJ=1

GO TO 22
21 SENSE LIGHT 2
22 PRINT 10

PRINT 16
PRINT 171A(II)

17 FORMAT (1H0,140XF16.b)
1=1

23 PRINT 31,Fl(I),F( I),G( I) H( I)
IF (EN-F UIfl30, 0, 32

30 IF(SENSE LIGHT 2)33935
32 1=I+1

GO TO 23
33 CONTINUE

SENSE LIGHT 2
IFCIIJ-MM) 15,15,35

I IJ=1
IF(IIP-MM) 190,180,180

190 SENSE LIGHT I
f SENSE LIGHT 2

Ku 1
.JJ=1
GO TO 15

I8 IJ=1l

IF(A(I I)) 191,192,192
191 JJil

ALP(JJ)=-ALP(JJ)
ALP(JJ+1)=-ALP(JJ+1)
GO TO 193

192 JJ=1
ALP(JJ)-ABSF(ALP(JJ))

ALP(JJ+1)-ABSF(ALP(JJ+I))
193 SENSE LIGHT 1

SENSE LIGHT2
Kzi
JJ- 1
IF( II-M) 15,15,114

31 FORMAT (4Fi6.6)

END
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SUB3ROUTINE UAUX
DIMENSION AI100),T( IOO),F(1OUO),'5(1OO0)hH(1OOO),ALP1(1OO),ALP(IGOO
I)tpi-(500)
CCMMON ATFtGH, II ALP I,ALP
1 ( )=T(51
1 (dl=r(6)
T(9l=-2.((AUU.)T(2.1I..fl5).Tc3)+Tca.D.Tc6))
It ErI URN
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SECOND PROGRAM

L, I ENSI0Mt A( 100 I T ( 100) F (ICuOl (I IOJO) ,H( 11 )#~ A4LP 1H 101) A LrC (1000

X, AF (1JO)0

C(2'I!djOJ A,[ ,f, H, Il, AL1,>,ALP
X, FI
X,t I1,G 12

16 FGRP~AT(120HO FTA F
x G f~fý SUM7, S')UAIE X,) F TA
REAr' 10

10 FGRMiAT (12H]

PRIhlT 10
REAP 121 d,M,V'MvI(P,Jv4,DLLX

12 1 FURPATC'416,F 16.6)
REAL, 12, E14f(ALP(JJ),JJ=1IvOP)

1I HURWA ('iFlb.6)
REAC Ii, C AC ) ,1 1, )

13 FORMAT (Mj 6.6)

I 10 FOiRVAT(4L~co.4
PRINT 50,EN,P,MM,CALP(JJ1 J,J=1 ,2),DELX

50 FORMAT C25HO THE UPPIR LIMIT ON LTA=Fo.2/2(H3 1~iE 'JIM.3Eý OF VALUE
XOF A=I6/30HOýAX1MUM '4J(WKER OF ITE:ZAIO\,S=I(6/2?HD I'JIIIAL VALUES OF
X H=iF`16.0/12110 STEP-SI/E=F1/,.O)
PRINT 51

Si FURMAT C IHO,ýOX96HA-VALUES
PRINT 52,(A(I), I=ld:)

52 FVRY~A T ,,O0X 6. 6)
I11=1

55 SEi,4SE LIGHT 2
53 SfhSE LI&ýH I1

JJ= 1
1 IP=1

IF (EAJ) 14,11,015
14 CALL Ef1DJ(W,
15 T(21=0.0

1(3 )=DELX
I (4)=AFC lIP)
1 (5)= 1.0
I (6)=ALP(JJ I

CALL INT(T, 3,1,0,0l,0,0,0,)
F 1(1= TI2)
F CI =T(4)

H(I )=T(6)

77 CALL INTM
F1(I)=T(2)
Fl 11=1(4)
GI I)=T(5)

19 H,'I)=T(6)
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lbOO IF (Ni) 1h, lb,1801
Ibol NN1,4I=

OU 0O2 I= IINA

PRI1NV 10
PiUNT 16

PII16 3' lI=. 1 :

JF(J.J-10P)1S,15,1&4

3 9 SLtiSE LICHT 0
(Al T(.- 22

40o IF(SEANSE LIG~f 1) 4~1,45
41 jj=Jj+l

;, 1:= r 1 .3
IF (St[iSE LICHIT 2) 21, It

JJ=K+2
l=K+ 1

lI I=lIJ+ 1

56 IF(S:ASE LIGHTr 2) 2.11 15
BO PR I N' 2 5 111J
25' FO~-A r ( 0X 116, 2 1H I IEý.A T IUNS CW-.P L ErT)f

SENSE LI6JHT 0
I IJ= I
Go 1`0 2 2

21 SEqSE LIZHT 2
22 PR1 iT 10

PR I 4 16
PRI dl`1 1,A ( I I

I1I FU.ý'AfI (1H0,'4OX,F~ocba)

23 PRI NT il ,FI(H),F (H),;,( I),H(HI
IF (E's4-F 1(1)13,3C,.j/-

30 IF(SE'JSE LiG,-d 2)33,35
12 1=1+i

0C To 23 -
33 CONT1 4IJE

SE114SC LI11441 2

35 IIP=IIP+I

I IJ I

190 SENSE LIGHT 1

1901 SILijSL LI(.Hr
1900 K=1

JJ= 1
GO TO 15

60H 1 IP= 1
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I IJ= I

!F( A( I I) I9, 192, I192
1191 JJ=1I

- ALP(JJ)=-ALPI(JJ)
ALP (.JJ+ 1)=-PJ 1+])
l(1) I1( 19 3V192 Ilj=I
ALP(JJ)=AHSF(ALP(JJ))
ALP(J)J+1)=AtaSF(ALP(Jj+lfl

193 SENSE LI(.Hr I

1930 SENSE LIGHT
1933A K=1

JJ=I

il FORMAT (14F]6.6)
END
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Input

For the second program, the input data consists of the following

cards:

Card No. Columns Contents

1 1
2-72 Problem identification

2 1-6 M
7-12 MM

13-18 lop

19 -24 NN

25-40 DELX

3 to N 1-16 EN
17-NN* H(0)

N+ Ito M 1-NN values of A
M+ 1 to L 1-NN values of AF

* The first value of H(0) is punched in Columns 17-32, and successive

lOP values are punched; field width of 16 up to and including column NN;
4 words per card.

For the first program:
same as the second program, except

lOP m 2
NN a0
leave cards N + 1 to L off.
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V DISCUSSION OF RESULTS

As discussed earlier, the emphasis in the present work was
placed more on the formulation and the solution of the problem than on

the exploitation of the results. The program included in part IV of the
report will allow anyone to generate immediately as many velocity and
pressure distributions as he wishes.

Typical velocity and pressure distributions are shown in

Figures 6 and 7 for several values of the curvature parameter A. The
first figure shows a plot of G( n ) against n . This only represents

the x-component of the velocity; in order to have the true velocity

distribution, it would be necessary to add the y-component of the
velocity. The plot is representative, however, since v is expected
to be small compared to u. The velocity distribution plot shows that,

as the curvature increases, the maximum velocity U increases and the
location of the point of maximum velocity moves radially outwards (in

the region of positive curvature, or, for an annular jet, towards the

center of the cavity). This trend is in agreement with the experiment-

al data on two-dimensional curved jets of Reference 7. Overall,
however, the differences between straight and curved jet velocity

distributions are not substantial (again, this could be modified due to

the effect of the transverse velocity).

Figure 7 shows a plot of the calculated pressure distribution

across the jet. It can be seen that the pressure variation is not

exactly linear as the momentum theory would predict. Also, the

pressure rise on both sides of the axis of the jet are not exactly

equal.
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